太阳成集团tyc234cc

智能醫學計算團隊

團隊簡介:

太阳成集团tyc234cc智能醫學計算團隊多年來緻力于人工智能與醫學健康交叉領域的前沿科學技術研究與應用。團隊在機器學習、模式識别、數據挖掘、智能診療、工業軟件、大模型、知識圖譜等關鍵共性技術的研究與應用持續深耕,形成特色鮮明且聚焦前沿的醫工交叉結合領域創新科研與人才培養平台。

團隊擁有一支結構合理、科研實力過硬的教師隊伍,現有教授1人,副教授2人,青年百人特聘副教授1人,青年百人講師1人,研究生50餘人。團隊先後主持了多項國家重點研發計劃項目、國家自然科學基金、廣東省自然科學基金和廣東省省級科技計劃等項目,并在人工智能領域的頂級刊物與國際會議,如IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)IEEE Transactions on Neural Networks and Learning Systems (TNNLS)IEEE Transactions on Image Processing (TIP)IEEE Transactions on Cybernetics (TCYB)Advanced ScienceIEEE Intelligent SystemsIEEE Transactions on Computational Social SystemsPattern RecognitionAAAI Conference on Artificial Intelligence (AAAI)ACM International Conference on Information and Knowledge ManagementCIKM)等發表科研論文90餘篇,并授權國家發明專利20餘件。

 

成員簡介:

曾安(團隊負責人),女,博士後、教授、博士生導師、國家重點研發計劃首席科學家。畢業于華南理工大學獲得計算機應用技術專業,工學博士學位,現任太阳成集团tyc234cc副院長。曾于2008年9月至2010年8月在加拿大達爾豪斯大學太阳成集团tyc234cc和醫學院開展博士後研究工作;于2016年12月至2017年12月期間作為第17批博士服務團成員赴貴州财經大學挂職鍛煉,挂任校長助理、大數據金融學院副院長;主持國家重點研發計劃項目1項、國家自然科學基金2項、廣東省自然科學基金2項、廣東省省級科技計劃項目1項,廣州市科技計劃項目1項等。在IEEE Journal of Biomedical and Health Informatics》、IEEE Transactions on Neural Networks and Learning Systems》Advanced Science》IEEE Intelligent Systems》、《IEEE Transactions on Computational Social Systems》和《電子學報》等刊物上發表論文50餘篇。廣東省工業軟件學會秘書長、中國生物醫學工程學會人工智能分會(委員)、廣東省生物醫學工程學會理事、CCF協同計算專委會(委員)、CCF人工智能專委會通訊委員、中國人工智能學會生物信息學與人工生命專業委員會(委員)。主要從事人工智能、機器學習、大數據分析與挖掘、深度學習和知識圖譜等理論研究及其在健康醫療大數據和疾病輔助診斷等領域的應用研究。

 

張逸群,男,博士、博士後、副教授、IEEE會員、深圳市高層次專業人才。2013于華南理工大學生物醫學工程專業取得學士學位20142019年分别于香港浸會大學計算機科學系取得碩士和博士學位,并随後開展博士後研究工作一年。目前已人工智能和機器學習領域的頂級國際期刊和會議 IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI)、《IEEE Transactions on Cybernetics》(TCYB)、《IEEE Transactions on Neural Networks and Learning Systems(TNNLS)AAAI Conference on Artificial Intelligence (AAAI)”、“International Joint Conference on Artificial Intelligence (IJCAI)”,以及知名國際期刊和會議等發表論文十餘篇。張逸群博士曾在香港浸會大學獲得多項獎學金和科研獎勵,還于20182019年分别獲得ISMIS’2018國際會議最佳論文獎 IEEE 智能計算分會(香港)的科研成果競賽冠軍。目前擔任多個國際期刊和會議TNNLS TCYB TETCI Pattern Recognition Neurocomputing ICDM PAKDD IJCNN ICPR ICIP 等的審稿人,以及擔任期刊Frontiers in Computer Science的專題“Advances in Long-Tail Learning”編委成員當前從事的研究方向是無監督機器學習、異構特征數據分析、流數據分析、以及上述技術在醫療健康數據分析中的應用。

 

楊寶瑤,女,博士、博士後、副教授。2014年于華南理工大學計算機科學與工程學院獲取學士學位;同年作為優秀畢業生,前往香港浸會大學直接攻讀博士,于2018年取得博士學位;2019年前往日本東京大學和日本理研(RIKEN)進行為期兩個月的訪問學習,也曾訪問美國馬裡蘭大學、日本京都大學等世界級頂尖學府,并且在人工智能領域主流國際會議“AAAI Conference on Artificial Intelligence”上展示了多項研究成果,緊貼人工智能最前沿的先進技術,積累了豐富的人工智能研究經驗。在機器學習、模式識别、醫療信息智能化等方面取得了豐富的研究成果,在《IEEE Transactions on Cybernetics》TCYB)IEEE Transactions on Image ProcessingTIP)IEEE Transactions on Information Forensics and Security》TIFS)、《Pattern Recognition》PR)、《IEEE Transactions on Neural Networks and Learning Systems》TNNLS)等國際知名學術刊物上發表了多篇學術論文,還在“AAAI Conference on Artificial Intelligence(AAAI)”、“IEEE Winter Conference on Applications of Computer Vision (WACV)”、“ACM International Conference on Information and Knowledge Management(CIKM)”“International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI”等國際主流學術會議上發表了多篇論文。擔任多個國際期刊和會議CVPR、ICCV、TNNLSTMM、MICCAI、TCYBPattern Recognition等的審稿人。研究方向是機器學習、聯邦學習、遷移學習、健康/醫學信息學、醫學圖像處理。

 

姬玉柱,男,博士、博士後,現為太阳成集团tyc234cc青年百人特聘副教授2011解放軍信息工程大學計算機專業取得學士學位20142019年分别哈爾濱工業大學計算機科學系取得碩士和博士學位,并于2020年赴新加坡南洋理工大學開展博士後研究工作。目前已人工智能領域的知名國際期刊如 IEEE Transactions on Neural Networks and Learning Systems(TNNLS)、、《Information Sciences》、《IEEE Transactions on Industrial Informatics》(TII)、《Neurocomputing》等發表論文十餘篇,申請發明專利多項擔任多個國際知名期刊如Information Sciences,Neurocomputing、Pattern Analysis and Applications、Neural Computing & Applications等審稿人。當前的研究方向是顯著性物體檢測、語義分割、視頻分析與合成、以及醫學圖像處理等。

 

趙靖亮,男,博士、博士後,現為太阳成集团tyc234cc青年百人講師。2013年于河北大學物理學專業取得學士學位,2019年于北京理工大學光電學院取得博士學位,随後在南方醫科大學生物醫學工程學院開展博士後研究工作2年。目前,已在醫學圖像處理領域的頂級國際期刊《IEEE Transactions on Medical Imaging》和《IEEE Journal of Biomedical and Health Informatics》以及知名國際期刊上上發表論文多篇,相關理論成果已授權國家發明專利三項。博士期間提出的血管結構提取算法在MICCAI冠狀動脈分割挑戰賽中取得小組第一名。目前擔任期刊IEEE Journal of Biomedical and Health Informatics的審稿人。當前從事的研究方向是主動脈夾層中心線提取、腔體分割、以及主動脈夾層智能診療應用研究。

 

團隊成果

團隊科研項目、部分科研論文、以及發明專利篩選展示如下。

近三年項目:

1. 國家重點研發計劃,工業軟件專項,2023YFB3308700,産業聚集區域業務資源服務工業軟件平台,2023/12/012026/11/31,1000萬,主持

2. 國家自然科學基金委員會, 重大研究計劃, 92267107, 面向無人工廠智能制造的多智能體協同控制與決策, 2023-01-01 至 2025-12-31, 80萬元, 在研, 參與

3. 國家自然科學基金面上項目,61772143,腦老化動态複雜過程多模态知覺推理模型的研究,61萬,2018/01- 2021/12,在研,主持

4. 國家自然科學基金青年科學基金項目,62102098基于多模态時間序列表征學習的肝癌早期風險預測算法研究2022/01-2024/12,30萬,在研主持

5. 國家自然科學基金青年科學基金項目,62102097,動态環境異構特征數據聚類分析研究2022/01-2024/12,30萬,在研主持

6. 廣東省自然科學基金委,廣東省基礎與應用基礎研究基金面上項目,非侵入式冠狀動脈病變的智能定位與評估關鍵技術研究,2024/012026/12,15萬,主持

7. 廣東省自然科學基金,面上項目,面向教育大數據聚類分析的表征學習研究,2023—2025,主持;

8. 廣東省省級科技計劃項目,2019A050510041, 心血管病輔助診斷和幹預中多模态影像處理關鍵技術研究, 2020/01-2023/12,100萬,在研,主持;

9. 廣東省自然科學基金委,廣東省基礎與應用基礎研究基金區域聯合基金項目,       2022A1515140096, 多源異構熱處理數據智能聯網及其保護的關鍵技術研究, 2022/102025/09,30 萬元,在研,校内主持

10. 廣東省自然科學基金項目,2022A1515011592,基于複雜異構特征醫學數據挖掘的膿毒症智能預測方法研究,2022/01-2024/1210萬,在研,主持

11. 廣州市科技計劃項目,201804010278, 基于數據挖掘技術的老年重症患者預後評估研究, 2018/04-2021/3,20萬,在研,主持

12. 廣州市科技計劃項目,基礎與應用基礎研究項目,基于分層聚類的多模态數據融合分析關鍵技術研究,2022—2024,主持;

13. 廣州市科技局,廣州市基礎與應用基礎研究項目,202201010266,肝活檢圖像的多類病變細胞弱監督自動檢測算法研究,2022/042024/035萬元,在研,主持

 

科研論文(按時間倒序排列):

[1] Jiayu Ye, An Zeng*, Dan Pan, et al. MAD-Former: A Retrospective Interpretability Model for Alzheimer’s Disease Recognition based on Multi-patch Attention[J]. IEEE Journal of Biomedical and Health Informatics, 2024. (中科院二區TopCCF推薦期刊,IF7.7

[2] Baoyao Yang*, PC Yuen, Yiqun Zhang, An Zeng, "Allosteric Feature Collaboration for Model-Heterogeneous Federated Learning," IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024. (SCI,影響因子14.255CCF-B)

[3] Xiaochen He, Baoyao Yang*, Fei Lyu, "MMS: Morphology-mixup Stylized Data Generation for Single Domain Generalization in Medical Image Segmentation," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2024. (CCF-B)

[4] Yuebin Xie, Xiaochen He, Baoyao Yang*, Fei Lyu, Siqi Liu, "CAM-Guided translation for unpaired weakly-supervised medical image segmentation," IEEE International Conference on Multimedia and Expo (ICME), 2024. (CCF-B)

[5] Pengkai Wang, Yiqun Zhang*, et. al., “Clustering by Learning the Ordinal Relationships of Qualitative Attribute Values”, Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, Yokohama, Japan, June 30-July 5, 2024.

[6] Yi Li, Baoyao Yang, Dan Pan, An Zeng, Yang Yang, "Early diagnosis of Alzheimer's disease based on multimodal hypergraph attention network", International Conference on Multimedia and Expo, ICME, 2023. (CCF-B)

[7] Dan Pan, An Zeng*, Baoyao Yang*, Gangyong Lai, Bing Hu, Xiaowei Song, Tianzi Jiang, "Deep Learning for Brain MRI Confirms Patterned Pathological Progression in Alzheimer's Disease," Advanced Science, 2023. (SCI,影響因子17.521)

[8] Pan D, Luo G, Zeng A*, et al. Adaptive 3DCNN-Based Interpretable Ensemble Model for Early Diagnosis of Alzheimer’s Disease[J]. IEEE Transactions on Computational Social Systems, 2023, 11(1): 247-266. (中科院二區,CCF推薦期刊,IF:5.0)

[9] An Zeng ; Chunbiao Wu; Guisen Lin; Wen Xie; Jin Hong; Meiping Huang; Jian Zhuang; Shanshan Bi; Dan Pan; Najeeb Ullah; Kaleem Nawaz Khan ; ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images, Computerized Medical Imaging and Graphics, 2023, 109

[10] Yiqun Zhang and Yiu-ming Cheung*, “Graph-based Dissimilarity Measurement for Cluster Analysis of Any-Type-Attributed Data”, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol. 34, No. 9, pp. 6530-6544, 2023.

[11] Lang Zhao, Yiqun Zhang*, et. al, “Selecting Heterogeneous Features based on Unified Density-Guided Neighborhood Relation for Complex Biomedical Data Analysis”, Proceedings of the 2023 International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1-8, Istanbul, Turkey, December 5-8, 2023.

[12] Zhipeng Zhang, Yiqun Zhang*, et. al, “Time-Series Data Imputation via Realistic Masking-Guided Tri-Attention Bi-GRU”, Proceedings of the 26th European Conference on Artificial Intelligence (ECAI), pp. 1-8, Krakow, Poland, October 2-4, 2023.

[13] Dan Pan, An Zeng*, Baoyao Yang, et al. Deep Learning for Brain MRI Confirms Patterned Pathological Progression in Alzheimer's Disease, Advanced Science, 2022(中科院一區Top影響因子17.56

[14] Pan D, Luo G, An Zeng *, et al. Adaptive 3DCNN-Based Interpretable Ensemble Model for Early Diagnosis of Alzheimer’s Disease[J]. IEEE Transactions on Computational Social Systems, 2022. (中科院二區,影響因子4.747

[15] Baoyao Yang and Pong C. Yuen*, “Revealing Task-relevant Model Memorization for Source-Protected Unsupervised Domain Adaptation,” IEEE Transactions on Information Forensics and Security, 2022. (SCI一區影響因子7.178CCF-A)

[16] Yiqun Zhang, Yiu-ming Cheung* and An Zeng, Het2Hom: Representation of Heterogeneous Attributes into Homogeneous Concept Spaces for Categorical-and-Numerical-Attribute Data Clustering, the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI), 2022. (CCF-A)

[17] Yuzhu Ji, Haijun Zhang*, Feng Gao, Haofei Sun, Haokun Wei, Nan Wang, Biao Yang, “LGCNet: A Local-to-global Context-aware Feature Augmentation Network for Salient Object Detection”, Information Sciences, vol.584, pp.399-416, 2022.SCI一區; 影響因子6.795CCF-B

[18] Baoyao Yang, Hao-wei Yeh, Tatsuya Harada, and Pong C. Yuen*, “Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation,” IEEE Transactions on Image Processing , Vol. 31, pp 419-431, 2022. (SCI一區影響因子10.856CCF-A)

[19] Grace Lai-Hung Wong*, Vicki Wing Ki Hui, Qingxiong Tan, Jingwen Xu, Hye Won, Terry Cheuk-Fung Yip, Baoyao Yang, Yee-Kit Tse, Chong Yin, Fei Lyu, "Novel machine learning models outperform risk scores in predicting hepatocellular carcinoma in patients with chronic viral hepatitis," JHEP Reports, 2022. (中科院SCI分區:1IF8.3)

[20] Fei Lyu, Baoyao Yang, Andy J. Ma and Pong C. Yuen*, "A Segmentation-Assisted Model for Universal Lesion Detection with Partial Labels," International Conference on Medical Image Computing & Computer Assisted Intervention (MICCAI), 2021. (CCF-B)

[21] Hao-wei Yeh, Baoyao Yang, Pong C. Yuen and Tatsuya Harada*, "SoFA: Source-data-free Feature Alignment for Unsupervised Domain Adaptation," the IEEE Winter Conference on Applications of Computer Vision (WACV), 2021.

[22] Zhang Yiqun and Cheung Yiu-ming*, Learnable Weighting of Intra-attribute Distances for Categorical Data Clustering with Nominal and Ordinal Attributes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. (DOI: 10.1109/TPAMI.2021.3056510) (SCI一區,影響因子17.861CCF-A) 

[23] Yang Baoyao and Yuen Pong C.*, Learning Adaptive Geometry for Unsupervised Domain Adaptation, Pattern Recognition, 2021, (DOI: 10.1016/j.patcog.2020.107638) (SCI一區,影響因子7.196CCF-B)

[24] Yuzhu Ji, Haijun Zhang*, Zhao Zhang and Ming Liu, “CNN-based Encoder-Decoder Networks for Salient Object Detection: A Comprehensive Review and Recent Advances”, Information Sciences, vol. 546, pp. 835-857, 2021.SCI一區;影響因子6.795WoS高被引論文CCF-B

[25] Yuzhu Ji, Haijun Zhang*, Zequn Jie, Lin Ma, and Q. M. Jonathan, Wu, “CASNet: A Cross attention Siamese Network for Video Salient Object Detection”, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 32(6), pp. 2676-2690, 2021.SCI一區;影響因子10.451CCF-B

[26] An Zeng, Huabin Rong, Dan Pan *, Longfei Jia, Yiqun Zhang, Fengyi Zhao, Shaoliang Peng, for the Alzheimer's Disease Neuroimaging Initiative (ADNI), Discovery of Genetic Biomarkers for Alzheimer's Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies, Interdisciplinary Sciences: Computational Life Sciences 2021. 08.(中科院二區,IF3.492

[27] Jun Wang; Long Zhang; An Zeng; Dawen Xia; Jiantao Yu; Guoxian Yu. DeepIII: Predicting Isoform-isoform Interactions by Deep Neural Networks and Data Fusion. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2021. (中科院三區,IF:3.702CCF-B

[28] 潘丹, 鄒超, 容華斌, 曾安. 基于遺傳算法和三維卷積神經網絡集成模型的阿爾茨海默症早期輔助診斷,生物醫學工程學雜志, 2021, 38(1): 47-55. EI源刊)

[29] Qingxiong Tan, Mang Ye, Baoyao Yang and Pong C. Yuen*, "DATA-GRU: Dual-Attention Time-Aware Gated Recurrent Unit for Irregular Multivariate Time Series," the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020. (CCF-A會議)

[30] Qingxiong Tan, Mang Ye, Andy Jinhua Ma, Baoyao Yang, Terry Cheuk-Fung Yip, Grace Lai-Hung Wong and Pong C Yuen*, "Explainable Uncertainty-Aware Convolutional Recurrent Neural Network for Irregular Medical Time Series," the IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020. (SCI,影響因子14.255CCF-B)

[31] Grace Lai-Hung Wong*, Qingxiong Tan, Yee-Kit Tse, Baoyao Yang, Terry Cheuk-Fung Yip, Chong Yin, Vicki Wing Ki Hui, et al., "Machine Learning Models to Predict Hepatocellular Carcinoma in Patients with Chronic Viral Hepatitis – A Territory-wide Study from Hospital Authority Data Collaboration Lab (HADCL) in 2000-2017," Hepatology, 2020, 72:07030-5774. (SCI,影響因子14.679)

[32] Yang Baoyao, Ye Mang, Tan Qingxiong and Yuen Pong C.*, Cross-domain Missingness-aware Time Series Adaptation with Similarity Distillation in Medical Applications, IEEE Transactions on Cybernetics, 2020. (DOI: 10.1109/TCYB.2020.3011934) (SCI一區,影響因子11.079CCF-B)

[33] Zhang Yiqun and Cheung Yiu-ming*, A New Distance Metric Exploiting Heterogeneous Inter-Attribute Relationship for Ordinal-and-Nominal-Attribute Data Clustering, IEEE Transactions on Cybernetics, 2020. (DOI: 10.1109/TCYB.2020.2983073) (SCI一區,影響因子11.079CCF-B)

[34] Zhang Yiqun, Cheung Yiu-ming* and Tan Kay Chen, A Unified Entropy-Based Distance Metric for Ordinal-and-Nominal-Attribute Data Clustering, IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(1): 39-52. (SCI一區,影響因子8.793CCF-B)

[35] Pan Dan, Jia Longfei, Zeng An*, Huang Yin and Song Xiaowei, Early Detection of Alzheimer’s Disease using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning, Frontiers in Neuroscience, 2020.

[36] Zhang Yiqun and Cheung Yiu-ming*, An Ordinal Data Clustering Algorithm with Automated Distance Learning, the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020. (CCF-A)

[37] Jingliang Zhao, Jie Zhao, Shumao Pang, Qianjin Feng. Segmentation of the True Lumen of Aorta Dissection via Morphology-constrained Stepwise Deep Mesh Regression[J]. IEEE Transactions on Medical Imaging, 2022, 41(7): 1826-1836. (SCI一區, 影響因子11.037,醫學圖像處理Top,CCF-B)

[38] Jingliang Zhao, Qianjin Feng. Automatic Aortic Dissection Centerline Extraction via Morphology-guided CRN Tracker[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(9): 3473-3485. (SCI一區, 影響因子7.021醫學圖像處理TopCCF-C)

[39] Jingliang Zhao, Danni Ai, Yang Yang, Hong Song, Yong Huang, Yongtian Wang, Jian Yang. Deep Feature Regression (DFR) for 3D Vessel Segmentation[J]. Physics in Medicine and Biology, 2019, 64(11): 115006. (SCI二區, 影響因子4.174)

[40] Jingliang Zhao, Jian Yang, Danni Ai, Hong Song, Yurong Jiang, Yong Huang, Luosha Zhang, Yongtian Wang. Automatic Retinal Vessel Segmentation using Multi-scale Superpixel Chain Tracking[J]. Digital Signal Processing, 2018, 81: 26-42. (SCI三區, 影響因子2.920)

[41] Yitian Zhao, Jingliang Zhao, Jian Yang, Yonghuai Liu, Yifan Zhao, Yalin Zheng, Likun Xia, Yongtian Wang. Saliency Driven Vasculature Segmentation With Infinite Perimeter Active Contour Model[J]. Neurocomputing, 2017, 259: 201-209. (SCI二區, 影響因子5.779CCF-C)

 

發明專利:

1. 曾安; 劉淇樂; 潘丹; 徐小維; 吳春彪; 陳宇琛; 一種冠狀動脈CT影像深度聚類和分割方法及系統, 2023-3-10, 中國, ZL202110443773.7(已授權)

2. 曾安; 米晨晰; 甘孟坤; 吳春彪; 潘丹; 一種基于多切片組合的冠狀動脈分割方法和裝置, 2023-1-24, 中國, ZL 202110644581.2(已授權)

3. 潘丹, 曾安, 楊寶瑤, 基于可解釋集成3DCNN的神經影像學生物标志物的提取方法, 2022-11-22, ZL202210987102.5 (已授權)

4. 曾安; 陳國斌; 潘丹; 高征; 一種大腦影像智能分類方法、裝置和設備, 2022-9-16, 中國, ZL202011569399.7(已授權)

5. 曾安, 謝銳偉, 潘丹,楊寶瑤, 張逸群, 一種心髒圖像分割方法及系統, 2022-04-22, ZL202210030012.3(已授權)

6. 潘丹, 羅琳, 曾安, 廖清青, 楊寶瑤, 張逸群, 一種基于多頭兩級注意力的三維點雲語義分割方法, 2022-11-04, ZL202210709918.8(已授權)

7. 曾安; 吳春彪; 潘丹; 徐小維; 劉淇樂; 陳宇琛 ; 一種冠狀動脈分割方法、系統以及存儲介質,2021-7-20, 中國, ZL202110509998.8(已授權)

8. 曾安; 王烈基; 潘丹; 一種腫瘤位置定位系統及相關裝置, 2021-7-6, 中國,ZL201910554981.7(已授權)

9. 黃殷. 曾安. 潘丹. 用于識别醫學圖像的計算機系統[P]. 申請号: 2019-8-14, ZL201910661400.X. (已授權)

10. 曾安. 鄒超. 潘丹. 醫學圖像分類裝置及系統[P]. 申請号:201910376120.4, 2019-5-7. (已授權)

11. 曾安. 王烈基. 潘丹. 一種腫瘤位置定位系統及相關裝置[P]. 申請号:201910554981.7, 2019-6-25. (已授權)

12. 曾安. 高征. 潘丹. 一種阿爾茨海默症分類預測方法及系統[P]. 申請号:201910824406.4, 2019-9-2. (已授權)

13. 曾安. 溫創斐. 潘丹. 一種圖像分類方法及系統[P]. 申請号:201910990121.8, 2019-10-17. (已授權)

14. 潘丹, 曾安,黃殷.一種阿爾茨海默症遺傳生物标志物确定方法及系統;申請号:2019104502480;狀态:(已授權)

15. 潘丹, 曾安,賈龍飛. 基于集成學習的阿爾茨海默症确定方法及系統;申請号:2018111672937;狀态:(已授權)

16. 曾安. 王烈基. 潘丹.基于全卷積神經網絡和互信息的醫學圖像配準方法及系統;申請号:2018111670382;狀态:(已授權)

17. 潘丹. 曾安. 黎建忠. 基于支持向量機的阿爾茨海默症特征分類方法及系統;申請号:2017112860765;狀态:(已授權)

18. 潘丹. 曾安. 黎建忠. 基于總體相關系數的阿爾茨海默症特征提取方法及系統;申請号:201711286045X;狀态:(已授權)

19. 潘丹. 曾安. 黎建忠. 基于高斯過程分類的阿爾茨海默症分類方法、系統及裝置;申請号:2017112841938;狀态:(已授權)